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One of the most difficult aspects of ocean state estimation is the prescription of the model 
forecast error statistics. The paucity of ocean observations limits our ability to estimate 
the characteristics of the error from model-observation differences. In most practical 
applications, simple functional forms of the error distributions for the individual variables 
are usually prescribed. Rarely are cross-covariances between different model variables 
used. Here a comparison is made between a univariate Optimal Interpolation (UOI) 
scheme and a multivariate 0 1  algorithm (MvOI) in the assimilation of ocean temperature. 
In the UOI case only temperature is updated using a Gaussian covariance function. In the 
MvOI salinity, zonal and meridional velocities are updated in addition to temperature 
using empirically estimated multivariate statistical relationships. 

Earlier studies have shown that a univariate 0 1  has a detrimental effect on the salinity 
and velocity fields of the model. Apparently, in a sequential framework it is important to 
analyze temperature and salinity together. For the MvOI estimation of the model error 
statistics is made from an ensemble of model integrations. An important advantage of 
using an ensemble of ocean states is that it provides a natural way to estimate cross- 
covariances between the fields of different physical variables constituting the model state 
vector, at the same time incorporating the model’s dynamical and thermodynamical 
constraints as well as the effects of physical boundaries. 

Only temperature observations have been assimilated in this study. In order to investigate 
the efficacy of the multivariate scheme two data assimilation experiments are validated 
with a large independent set of recently published subsurface observations of salinity, 
zonal velocity and temperature. For reference, a third control run with no data 
assimilation is used to check how the data assimilation affects systematic model errors. 
While the performance of the UOI and MvOI is similar with respect to the temperature 
field, the salinity and velocity fields are greatly improved when multivariate correction is 
used, as evident fi-om the comparison with independent observations. The MvOI 
assimilation is found to improve upon the control run in generating the water masses with 
properties close to the observed, while the UOI failed to maintain the temperature and 
salinity structure. 



Multivariate error covariance estimates by Monte-Carlo 
simulation for assimilation studies in the Pacific Ocean. 

Anna Borovikov* 
SAIC, Beltsuille, Maryland 

Michele M. Rienecker 
Global Modeling and Assimilation Ofice, 

NASA/Goddard Space Flight Center, 
Greenbelt, Maryland 

Christian L. Keppenne 
SAIC, Beltsuille, Maryland 

Gregory C. Johnson 
NOAA/Pacijk Marine Environmental Laboratory 

Seattle, Washington 

December 2, 2003 

* Corresponding author address: Anna Borovikov, Code 900.3 NASA/Goddard, Greenbelt, MD 20771, 
ayb@rnohawlc.gsfc.nasa.gov 



Abstract 

One of the most difficult aspects of ocean state estimation is the prescription of 
the model forecast error covariances. The paucity of ocean observations limits our 
ability to estimate the covariance structures from model-observation differences. In 
most practical applications, simple covariances are usually prescribed. Rarely are cross- 
covariances between different model variables used. Here a comparison is made between 
a univariate Optimal Interpolation (UOI) scheme and a multivariate 01 algorithm 
(MvOI) in the assimilation of ocean temperature. In the UOI case only temperature 
is updated using a Gaussian covariance function and in the MvOI salinity, zonal and 
meridional velocities as well as temperature, are updated using an empirically estimated 
multivariate covariance matrix. 

Earlier studies have shown that a univariate 01 has a detrimental effect on the 
salinity and velocity fields of the model. Apparently, in a sequential framework it 
is important to analyze temperature and salinity together. For the MvOI an estima- 
tion of the model error statistics is made by Monte-Carlo techniques from an ensemble 
of model integrations. An important advantage of using an ensemble of ocean states 
is that it provides a natural way to  estimate cross-covariances between the fields of 
different physical variables constitilting the mode! state ~ e c t m ,  at the same time ir ,c~r- 
porating the model’s dynamical and thermodynamical constraints as well as the effects 
of physical boundaries. 

Only temperature observations from the Tropical Atmosphere-Ocean array have 
been assimilated in this study. In order to investigate the efficacy of the multivariate 
scheme two data assimilation experiments are validated with a large independent set of 
recently published subsurface observations of salinity, zonal velocity and temperature. 
For reference, a third control run with no data assimilation is used to check how the 
data assimilation affects systematic model errors. While the performance of the UOI 
and MvOI is similar with respect t o  the temperature field, the salinity and velocity 
fields are greatly improved when multivariate correction is used, as evident from the 
analyses of the rms differences of these fields and independent obsevations. The MvOI 
assimilation is found to improve upon the control run in generating the water masses 
with properties close to the observed, while the UOI failed to maintain the temperature 
and salinity structure. 
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1. Introduction 

Data assimilation provides a framework for the combination of the information about 

the state of the ocean contained in an incomplete data stream with our knowledge of the 

ocean dynamics included in a model. The problem of data assimilation may be formulated in 

statistical terms, where because of uncertainty in both observations and models, an estimate 

of the state of the ocean at any given time is considered to  be a realization of a random 

variable. An estimate of the state of the ocean is produced as a blend of observation 

and model estimates based on prior knowledge of the error statistics of each, with some 

measure of the uncertainty in the estimate. The differences between assimilation methods 

lie primarily in the approaches taken to estimate the error statistics associated with the 

forward (dynamical) model, the so-called background or forecast error statistics. Since an 

accurate representation of the data and model error statistics is crucial to a successful data 

assimilation, a lot of effort has been expended in this direction. 

One simplifying assumption that is often made is that these error statistics do not change 

significantly with time and thus can be approximated by a constant probability distribution. 

This is the basis of the Optimal Interpolation (01) data assimilation scheme. An alternative 

to this assumption is to  allow for time evolution of the probability distribution. An example 

of such a data assimilation scheme is the Kalman Filter (Kalman 1960), in which the error 

is assumed to be normally distributed and the forecast error covariance matrix is evolved 

prognostically. The Kalman Filter can be shown to  give an optimal estimate in the case 

of linear dynamics. To account for nonlinear processes a generalization of the Kalman 

Filter, the Extended Kalman Filter uses instantaneous linearization of the model equations 

during the data assimilation analysis and the full equations to update the model (e.g., Daley 

1991; Ghil & Malanotte-Rizzoli 1991). However the cost of time stepping the model error 

covariance matrix is computationally expensive, rendering this method impractical when 

used with high-resolution general circulation models. Under certain conditions it is possible 

to use an asymptotic Kalman Filter, developed by Fukumori et al. (1993), where a steady- 
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I .  

state covariance matrix replaces the time-evolving one. An Ensemble Kalman Filter (EnKF) 

was introduced by Evensen (1994) based on a Monte Carlo technique, in which the model 

error statistics are computed from an ensemble of model states evolving simultaneously. 

An application of this method with the Poseidon ocean model used in this study has been 

developed by Keppenne and Rienecker (2002, 2003). 

This study focuses on the importance of the multivariate aspect of the forecast error 

covariance in the context of 01 data assimilation. Provided a fairly good observing network, 

the background error structure can be estimated using analysis of spatial and temporal 

decorrelation scales, as done in numerous meteorological applications (Ghil & Malanotte- 

Rizzoli, 1994). However, even for atmospheric data assimilation, the observing system is 

riot adequate to mppuit a I'uii caicuiation of background error covariance statistics and so 

the model itself has been used to estimate these statistics. The vastness and complexity of 

the domain and relative scarcity of oceanographic observations require additional simplifying 

assumptions in similar calculations (e.g., homogeneity of statistics). This paper explores an 

estimation of the model error from an ensemble of model integrations using Monte-Carlo 

techniques in a manner similar to the EnKF. An important advantage of using an ensemble 

of ocean states is that  it provides a natural way to  estimate cross-covariances between the 

fields of different physical variables constituting the model state vector. 

There are many questions that arise with this approach. For example, how large should 

the ensemble be, and more generally, how should i t  be generated. Other questions are 

related to  the underlying assumption of the stationarity and the unbiased nature of error 

statistics in the 01 algorithm. Will a one-time estimate of the model error, derived from a 

Monte Carlo ensemble, be a good representation of this error at another time, at any time 

during assimilation? Or, in other words, what is the variability of the model error covariance 

structure? What are the dominant time scales? Can this information be acquired and, if so, 

used to  improve the assimilation scheme? 

The primary interest of this study is ocean phenomena taking place on seasonal-to- 
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interannual time scales. One example of such phenomena is the quasi-regular occurrence of 

El Niiio - a large scale warming of near-surface temperature in the eastern equatorial Pacific 

Ocean accompanied by a basin wide perturbation in the tilt of the thermocline across the 

equatorial ocean. The estimate of error statistics derived below attempts to capture errors 

associated with such variability. The logical organization of the paper is as follows. Next 

01 assimilation algorithm, model and data are described (Section 2). Then the forecast 

error covariance model, a traditional Gaussian model of the forecast error covariance and 

the empirical multivariate model of interest are detailed (Section 3). Then the multivariate 

error covariance model properties are explored (Section 4). After the experimental setup is 

decribed, the results of multivariate assimilation are compared with univariate assimilation 

(Section 5). The paper concludes with discussion of the resuits and further directions of 

research (Section 6). 

2. 0 1  assimilation 

a. OI framework 

A detailed discussion of the sequential data assimilation algorithms can be found in earlier 

literature (see for example, Lorenc (1988)). Here, only a brief outline is given. 

A dynamic (prediction) model can be represented in terms of a nonlinear operator Q(x), 

where x is a state vector of length n,. Let d denote a vector of observations which has 

dimension n d  << n, (typically) and an element of d is not necessarily an element of the state 

vector x. The aim of a data assimilation algorithm is to  determine the best estimate of the 

state vector based on the estimates available from both model and observations. . Formally, 

an optimal estimate of the state would minimize a “cost” functional, which can be defined, 

for example, to  represent the total variance of the system - a measure of the misfit between 

the estimate and observations and other desired constraints, each with their own “cost” or 
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“risk”. For example, written as 

J(x) = (X - x’)~P(x - xi) + (d - 3c(x))TW(d - %(x)), (1) 

the cost functional J ( x )  contains a model error term and a data misfit term. Here xf denotes 

the model simulated state, and 3c denotes the observation transformation operator, which 

relates the observed quantities and the model variables. Other terms, S U C ~  as boundary 

condition error, may be explicitly included in J(x). P and W are weights representing our 

confidence in the model and the data respectively. Specification of these weight matrices 

requires some prior knowledge of the model and data error statistics. 

A discrete form of the model can be written as x k  = QI,.-l(xk-l), where XI, is the forecast 

state vector at time level k and @k-l  is the numerical approximation to the set of model 

equations describing the evolution of the state forward from time k - 1 to k .  Similarly, 

observations available at time k can be denoted as dk and the observation transformation 

operator as % k ( x k ) .  

A sequential unbiased assimilation scheme for the time-varying XI, is given by: 

Here superscript f stands for the forecast and a for the analysis. All sequential data assimi- 

lation schemes have the form of equation (3) and differ from each other by the weight matrix 

KI, often called the gain matrix. 

The optimality of KI, can be defined under certain assumptions about the error statistics. 

Most sequential data  assimilation algorithms are based on assumptions that  the observational 

and model errors are unbiased, white in time, spatially uncorrelated with each other and that 

their spatial covariances are known (usually i t  is assumed that at least initially the errors 

are Gaussian). 

Suppose the true evolution of the system is governed by 
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where e;, called system noise or model error, is a (Gaussian) white-noise sequence: 

The observations may be described by 

where e;, the observational noise or measurement error, is also a (Gaussian) white-noise 

sequence, 

This e: may also include any error of representations of the processes of interest,, althoiigh 

such errors will not in general satisfy the assumption of a white, Gaussian sequence. Without 

any loss of generality, it is also assumed that the system noise and the observational noise 

are uncorrelated with each other, 

EEL (Ef = 0. 

Under these assumptions, for a linear model and a linear observation transformation 

operator 3ck  = Hk in the equations (4) and (5), the cost functional (1) is exactly minimized 

in a least-squares sense when 

Here P,f is the forecast error covariance matrix, which, in general, is time-dependent and 

the accuracy of its estimation relies on our knowledge of S k  and Wk. For a high resolution 

ocean model with the number of state variables on the order of lo6,  P{ is extremely expensive 

to store and evaluate in full. Thus, numerous approaches have been suggested to simplify 

the computation of Pi. The traditional 01 method assumes that  P,f P is approximately 

constant. In the case of observational errors, the matrix W is often assumed to  be diagonal 

and to  contain only information about the level of variance in the measurement error due to  
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instrumental imperfection and unresolved small-scale signal. There are means of allowing for 

simple time evolution of the forecast error variance (see, for example, Ghil 1991, Rienecker 

and Miller 1991), but they are not considered here. A full evolution of Pi would be a Kalman 

filter. 

The effects of non-linear dynamics and inhomogeneities associated with ocean boundaries 

are implicitly taken into account when the empirical forecast error covariance matrix P is 

constructed from model integrations as presented in the next section. 

b. Model and forcing 

The model used for this study is the Poseidon reduced-gravity, quasi-isopycnal ocean 

model introduced by Schopf and Loughe (1995) and used by Keppenne and Kienecker (2002, 

2003) for test of the Ensemble Kalman Filter. The model described by Schopf and Loughe 

(1995) has been updated to  include the effects of salinity (e.g., Yang et al,. 1999). The model 

was shown to provide realistic simulations of tropical Pacific climatology and variability 

(Borovikov et al., 2001). 

The model equations are: 
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Here is the generalized vertical coordinate, h is layer thickness, v is the 2D horizontal 

velocity vector, we is mass flux across ( surfaces, T is potential temperature, S is salinity, Q 

is external heat flux, P is pressure, p is density, q is dynamic height, b is buoyancy, T is 

wind stress, K and u are vertical diffusivities and friction, and F is a horizontal smoothing 

operator. The generalized vertical coordinate of the model includes a turbulent well-mixed 

surface layer with entrainment parameterized according t o  a Kraus-Turner (1967) bulk mixed 

layer model. 

For this study, the domain is restricted to  the Pacific Ocean (45"s to 65"N) with real- 

istic land boundaries. At the southern boundary the model temperature and salinity are 

' relaxed to  the Levitus (1994) climatology. The horizontal resolution of the model is 1" in 

longitude; and in the meridionai direction a stretched grid is used, varying from ij3" ai; the 

equator to  1" poleward of 10"s and 1O"N. The calculation of the effects of vertical diffusion, 

implemented at three hour intervals through an implicit scheme, are parameterized using a 

Richardson number-dependent vertical mixing following Pacanowski-Philander (1981). The 

diffusion coefficients are enhanced when needed to  simulate convective overturning in cases 

of gravitationally unstable density profiles. Horizontal diffusion is also computed daily using 

an 8th-order Shapiro (1970) filter. The net surface heat flux is estimated using the atmo- 

spheric mixed layer model by Seager et al. (1994) with the monthly averaged time-varying 

air temperature and specific humidity from the NCEP-NCAR reanalysis (e.g., Kalnay et al. 

1996) and climatological shortwave radiation from the Earth Radiation Budget Experiment 

(ERBE) (e.g., Harrison e t  al. 1993) and climatological cloudiness from the International 

Satellite Cloud Climatology Project (ISCCP) (e.g., Rossow and Schiffer 1991). 

Surface wind stress forcing is obtained from the Special Sensor Microwave Imager (SSM/I) 

surfaces wind analysis produced by Atlas et al. (1991) based on the combination of the 

Defense Meteorological Satellite Program (DMSP) SSM/I data  with other conventional data 

and with the ECMWF 10m surface wind analysis. The surface stress was produced from 

this analysis using the drag coefficient of Large and Pond (1982). Daily averaged wind stress 
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forcing for the time period of 1996-1997 was applied t o  the model. The precipitation is given 

by monthly averaged analyses of Xie and Arkin (1997). 

For example, model mean (1988-1997) temperature, salinity and zonal velocity sections 

along the equator compare very well with estimates made from observations (Johnson et al., 

2002) taken during an overlapping period (figure 1). 

c.  Data 

The TAO/Triton Array, consisting of more than 70 moored buoys spanning the equato- 

rial Pacific (http://www.pmel.noaa.gov/toga-tao/home.html and McPhaden et al., 1998) as 

shown in figure 2, measures oceanographic and surface meteorological variables: air tempera- 

ture, relative humidity, surface winds, sea surface temperatures and subsurface temperatures 

down to  a depth of 500 meters. By 1994 these measurements became available daily across 

the equatorial Pacific Ocean approximately uniformly spaced at 15 degrees. 

The temperature observations from the TAO/Triton array were the only data type used 

during these assimilation experiments since the focus is on well-known deleterious effects of 

temperature assimilation in the equatorial waveguide. (However, in the global assimilation 

conducted by the NASA Seasonal-to-Interannual Prediction Project t o  initialize seasonal 

forecasts, the global XBT data base is included.) The standard deviation of the observational 

error, OTAO, is set to  0.5"C and the errors are assumed to be uncorrelated in space and time. 

This value is high compared to  the instrumental error of 0.1"C (Freitag et a1 , 1994) since it 

also has to reflect the representativeness error, i.e. the data contains a mixture of signals of 

various scales including frequencies much higher than the target scales of assimilation. By 

tuning OTAO we effectively control the ratio of the data  error variance to the model error 

variance. 
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3. Forecast error covariance modeling 

In error covariance structure modeling, one is striving for an accurate representation of 

the error statistics and usually for simple and efficient implementation for computational 

viability. With little knowledge of the true nature of the model error covariances, one often 

has to  make assumptions and settle for simple methods which usually have the advantage of 

being easy to  implement. This section describes two different models for the forecast error 

covariance structure, a simpler and less computationally intense and a more elaborate and 

hopefully more accurate model. For both, an 01 framework is used wherein the forecast 

error covariance matrix, Pf, is assumed to be time-invariant. 

a. Univariate junctional model 

A commonly used method of analytical error covariance function (see, for example, Car- 

ton, 1990 and Ji, 1995) has been employed here in the tropical Pacific Ocean region. In 

this study, the spatial structure of the model temperature (T) forecast error is assumed to  

be Gaussian in all three dimensions with scales 15", 4" and 50 m in zonal, meridional and 

vertical directions, respectively. These scales were estimated from the ensemble of model 

integrations described below in the next subsection. Those spatial scales are also resolved 

by the observing system of equatorial moorings which are generally separated by 10" to  15" 

in the zonal direction and by 2" to 3" in the meridional direction. Horizontal scales are com- 

parable to  scales used in the similar assimilation schemes, for example, by Ji et al. (1995) 

and Rosati et al. (1996). There are several advantages of this error covariance model. For 

the Gaussian form of the covariance function, the minimum variance estimate for the least 

squares minimizing functional is the maximum likelihood estimate, and the analysis error 

covariance function is also Gaussian. It is easy t o  implement and adapt t o  the parallel 

computing architecture. In this implementation the temperature observations have been 

processed and the correction was only made to the model temperature field during each 
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assimilation cycle, while other variables adjusted according to the model’s dynamic response 

to the temperature correction. 

b. Monte Carlo method f o r  estimating the multivariate forecast error covariance 

A more realistic covariance structure that is consistent with model dynamics and the 

presence of ocean boundaries was sought through an application of the Monte Carlo method. 

The variability across an ensemble of ocean state estimates was used for a one-time estimate 

of the model forecast error statistics. In spirit, this approach is similar to the Ensemble 

Kalman Filter except that  the error covariance does not evolve with time and does not feel 

the impact of prior data assimilation, although it could. 

The design of this forecast error covariance model was influenced by the need to assimilate 

TAO mooring observations for seasonal forecasts. While the Poseidon model has layered 

configuration, the TAO observations are taken at approximately constant depth levels. In 

the implementation for this study, the covariances are calculated on pre-defined depth levels. 

At each assimilation cycle the model fields are interpolated to these depths, the assimilation 

increment is computed on these pre-specified levels, and are then interpolated back t o  the 

temperature grid points at the center of the model layers. The discussion below deals with 

the three-dimensional model error covariance matrix whose horizontal structure coincides 

with the model grid, and in the vertical is arranged a t  constant depths coincident with the 

nominal TAO instrument depths. 

Consider the non-dimensionalized model state vector 

X =  

here T ,  S ,  U ,  V and ssh are model var 

, (8) 

bles: temperature, salinity, zonal and meridional 

velocities and dynamic height respectively, and o [ ~ , ~ , ~ , v , ~ ~ h ]  are non-dimensionalizing factors. 

For the latter we took the global variance within each of the model fields at  a depth of 100 

11 



m: a~=0.65, as=0.08, au=0.09, av=0.08 and a s s h = 0 . 0 8  in the corresponding units. The 

multivariate covariance matrix is 

p T , T  p T , S  p T , U  p T , V  p T , s s h  

pT,S pS,S p S , U  p S , V  p S , s s h  

p U , T  p U , S  p U , U  p U , V  p U , s s h  

p V , T  p V , S  p V , U  p V , V  p V , s s h  

p s s h , T  p s s h , S  p s s h , U  p s s h , V  p s s h , s s h  

(9) 

If the matrix Amxnz contains the m-member ensemble of (anomalous) ocean states as 

columns, then P can be computed as 

, with rank(P) 5 min{m, n,} 
p n x x n x  - A A ~  

- 
m - 1  

The size of P is on the order of n, M lo6  (the dimension of the state vector), while its 

rank is no greater than the size of the ensemble, m (on the order of lo2 in the case of this 

study). The estimate of the error covariance matrix was stored on file and read in during 

every assimilation cycle of the 01 algorithm. Since the rank of the error covariance matrix 

P estimated using this method is no greater than the Monte Carlo ensemble size, i t  can 

be conveniently represented using a basis of empirical-orthogonal functions (eofs) , .E. To 

compute the eof representation of P, observe that  AAT has the same eigenvalues as ATA, 

which is only m x m and the eigenvectors of AAT are related t o  those of ATA as 

where EnxXm contains the eigenvectors of AAT, U""" contains the eigenvectors of ATA 

and Amxm = diag(X:, ..., A;) has the eigenvalues of ATA. Then 

A A ~  E A E ~  
= Q Q ~  - p = -  - 

m - 1  m - 1  

The columns of E are orthonormal and the eigenvalues A:, i = 1, .., m, are the variances. 

Equation (7) can thus be rewritten as 

(13) 
K = QQTHT(HQQ T T  H + W)-', with Q = EA1/'(m - l)-1/2. 
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1) Ensemble generation 

As the first test of this methodology, the ensemble of states was generated by forcing the 

ocean model with an ensemble of air-sea fluxes: 

F, = F + 6F,. 

F is the climatology of forcing used for control run, 6F, are interannual anomalies - in phase 

with interannual SST anomalies but with different internal atmospheric chaotic variations. 

Surface forcing is used for the ensemble generation because this is probably the dominant 

source of error in the upper ocean in the equatorial Pacific. Although errors in the synoptic 

forcing will be large, the focus here is on the longer time scales of interest for seasonal 

prediction. The fluxes were obtained from a series of integrations of the Aries atmospheric 

model (e.g., Suarez and Takacs, 1995) forced by the same interannually varying sea surface 

temperatures (SST) and differing only in slight perturbations to  the initial atmospheric state. 

The interannual anomalies in surface stress and heat flux components were added to  seasonal 

forcing estimated from the sources described in the section 2(b). This approach attributes 

all of the ocean model forecast error to uncertainties in the longer time scale surface flux 

anomalies, since differences between the ensemble members were due to atmospheric internal 

variability. 

In all, 32 runs were conducted, each 15 years long, corresponding to the 1979-1993 period 

of the SST data used to force the atmospheric model. Five day averages (pentads) of the 

model fields were archived. These were subsequently interpolated to the 11 depth levels, 

coincident with the depths of the TAO observations. All the covariance estimates have been 

made using these fields. The matrix of ensemble members, A was formed by selecting at 

random five years from the 15 year period, then choosing a pentad from each year corre- 

sponding to the same date, say, the first of January. The same pentad was used for each 

ensemble member. This allowed for collection of an ensemble of 160 members. The mean 

was removed separately for each of the 5 years to  remove the influence of interannual vari- 
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ability. The eofs of the matrix P were then computed. The properties of the error covariance 

matrix constructed in such a way are discussed below. 

2) Compact support 

A persistent problem associated with the empirical model error covariance estimation is 

the appearance of unphysical large lag correlations that are an  artifact of the limited ensemble 

size - we use an ensemble size of 160, yet the potential numbers of degrees of freedom are 

O( lo6).  To alleviate this problem, the multivariate anisotropic inhomogeneous matrix was 

modified by a matrix specified by a covariance function that  vanishes at  large distances, 

i.e. a Hadamard product of the two matrices was employed, as discussed by Houtekamer 

and Mitchell (2001). Keppenne and Rienecker (2002) implemented the compact support 

for the Ensemble Kalman Filter developed by the NASA Seasonal-to-Interannual Prediction 

Project (NSIPP) for parallel computing architectures, and that implementation is used in 

the present study. The functional form follows the work by Gaspari and Cohn (1999) who 

provided a methodology for constructing compactly supported multi-dimensional covariance 

functions. The characteristic scales of this function were selected in such a way that most of 

the local features of the empirically estimated error covariance structure are preserved but 

at large spatial lags the covariance vanishes: 30", 8" and 100 m in the zonal, meridional and 

vertical directions respectively. 

To visualize the covariance structure, an artificial example is considered with a single 

observation different from a background field by one non-dimensional unit. The resulting 

correction reflects the model error correlation structure - it corresponds t o  a section of a single 

row of the P matrix for the case of a perfect observation. This is also termed the marginal 

gain since is measures the impacts of processing a single measurement without reference to 

other data  that might be assimilated. The correlation between the temperature observation 

at several locations across the equatorial Pacific ocean (156"E, 180"W, 155"W and 125"W) 

at depths roughly corresponding to  the position of thermocline, approximately the 20°C 
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isotherm depth in figure 1) and the temperature error elsewhere in the Pacific (submatrix 

PT,T in equation (9)) as derived from the ensemble of states with compact support (figure 

3) reveals that  the long range correlation is eliminated, but the local structure is intact. 

3) Multivariate error covariance patterns 

The following discussion of the multivariate error covariance model will focus on the 

thermocline region in the equatorial Pacific Ocean. The shapes of the correlation structure 

associated with a single point differ between the eastern and western regions (figure 3, top 

4 panels). The zonal scale tends to be shorter in the western and central and longer in 

the eastern part of the basin. Meridional decay scales are similar along the equator, but the 

vertical correlation (figure 3, middle 4 panels) varies: shorter and symmetrical in the western 

part, slightly skewed in the central part and symmetrical but more elongated in the eastern 

part of the equatorial Pacific basin. Zonal sections (figure 3, bottom 4 panels) illustrate 

the anisotropy associated with the tilt of the thermocline. This example alone demonstrates 

that  the univariate temperature error covariance structure is so complex that  a homogeneous 

error correlation structure is not applicable. 

Although t o  date there have been very few salinity observations, this is changing with 

the Argo program (http://argo.jcommops.org and Wilson, 2000). Hence, i t  is of interest to 

explore corrections associated with salinity observations (figure 4). The decorrelation scales 

in the western basin are noticeably longer than in the middle and eastern basin, 8 to  10 

degrees in zonal and 4 to 6 degrees in meridional direction in the west and 2-4 degrees in 

zonal and 1-2 degrees in meridional direction in the east. The scales are notably shorter that  

those for temperature (figure 3) except for the meridional scales in the west. 

In a similar fashion one can analyze the temperature-salinity, temperature-velocity and 

other cross-variable relationships, i.e. the effect of a single unit observation on various fields 

- components of the ocean state vector. Corrections in S and U fields associated with a T 

observation and corrections in T and U associated with S observation are displayed for a 
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single location, 155"W at equator (figure 5). 

The temperature-salinity covariance, i.e. the effect of a single unit temperature obser- 

vation on the salinity field (this would correspond to the subsection of the submatrix PTpS) 

is described next (based on the figure 5 and plots of cross-covariances at various locations 

not shown here). The structure of the temperature-salinity relationship is complex and 

irregular. The change in salinity associated with a temperature increment is not necessar- 

ily density-compensating. Equatorial temperature and salinity south of the equator in the 

western region are anticorrelated, while temperature at the equator and salinity immediately 

t o  the north are correlated at 150 meters in the western and central Pacific and the scales of 

influence are short compared with the temperature-temperature relationship. The anticorre- 

latioil is consistent with t h e  mean thermohaiine \ I -3) structure, with fresh water overiying 

a saline core. In the east, the correlation between T and S is primarily vertical; horizontal 

scales are very short, on the order of 2-4 degrees. The positive correlations on the equator, 

as seen on the meridional sections of the central basin, are higher towards the northern hemi- 

sphere, and the negative correlations to  the south are consistent with higher temperatures 

straddling the cold tongue with more saline water south of the equator and fresher water 

north. Thus the covariances are consistent with vertical and meridional variations. 

Irn " \  

The relationship between temperature and velocity in the western Pacific reflects tem- 

perature changes associated with upstream advection/convergence effects. At 156"E and at 

the dateline, the higher temperatures are associated with a weaker equatorial undercurrent 

in a broad region to  the west. At 155"W, the effects are more local and wavelike with 

increased temperature associated with a stronger equatorial undercurrent. At 125" W the 

scales are shorter and also wavelike, with changes in temperature apparently associated with 

instability waves. 

It is possible to  infer from the multivariate analysis the effect a single salinity observation 

would have on temperature and zonal velocity fields at various locations across the equatorial 

Pacific ocean. The high level of positive correlation between salinity and temperature field 
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in the central and to a lesser degree in the eastern Pacific indicates that  the correction of 

the salinity field may have a significant impact on the temperature. The S-U relationship is 

weak in the western part of the basin and the correlation patterns are wavelike in the east, 

strongly pronounced in the north-south direction. 

4. Robustness of the model error covariance estimate 

In this section, the sensitivity of the covariance structure to the choice made in populating 

the ensemble, i.e. to seasonal or interannual variations in the atmospheric forcing is explored 

to  evaluate the robustness of the covariance estimates. The robustness is tested by randomly 

sampling the full suite of integrations. Five years out of 15 (the length of the run) were 

picked at random, then the same date (e.g., January 1-5 pentad) was taken for each year. 

As before, the mean across the ensemble was removed for each year. The procedure was 

repeated ten times allowing us to obtain ten realizations of the covariance matrix P. The 

pentads were chosen so that realizations from the same season and from different seasons 

could be compared. From visual assessment of figures similar to figures 3-5, the correlation 

structures represented by the different estimates of P were very similar. 

One comparison of the robustness of covariance estimates is pointwise covariance sections 

(figure6) at the same locations as simulated temperature observations as in figures 3-4. 

The tight distribution of the decorrelation curves from the 10 different P realizations (thin 

lines) indicates good reproducibility of the covariance structure. No significant interannual 

variability is apparent within this collection of P matrices. The over-plotted Gaussian curves 

show that  the decorrelation scales vary at the four locations across the equatorial basin and 

can hardly be fitted by a single parameter (scale estimate) in a functional covariance model. 

In the UOI covariance model used for comparison below, the temperature decorrelation scales 

chosen are consistent with the scales of the empirical error covariance model in the western 

and central equatorial Pacific. 
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The difference among the Monte Carlo estimates of P can also be quantified in terms 

of the dominant error subspaces spanned by each of the ensemble sets. These subspaces 

are best described by the orthonormal bases of empirical orthogonal functions (eofs). The 

use of eofs allows a spatial filtering of the covariance structures by inclusion of only those 

eofs that  are non-noise-like, thus defining the dominant error subspace. This procedure 

also eliminates problems associated with different levels of variance even though the spatial 

structures (covariances) are similar. 

Consider the projection of an ensemble of ocean state anomalies onto a given set of eofs. 

An anomalous ocean state vector a can be expressed in terms of the eof basis {a}  as 

a = &aiai + 6". (15) 

The set of eofs {a}  spans the subspace Sa of the model error space S and 6" is the residual 

lying in the complement of Sa, i.e., subspace S:, not spanned by {a} .  S: may or may not 

contain significant model error covariability information. To assess the information content 

not included in Sa we examine covariability through the eofs of 6*. If the eofs of 6" are noise- 

like, this would indicate that the eofs {a}  captured the significant information regarding the 

model error contained in a. This calculation was repeated for several instances of {a}  and 

S = {a} to assess the invariability of Sa. 

The spectra of various ensembles of 6" c Sk = S\Sa are shown in figure 7, where { a }  

are calculated from January pentads and {a} are pentads from July. In every case, the 

eigenvalues of {a}  and {S} are normalized by the variance of the corresponding ensemble 

{a}. The eigencurves of {S} are almost flat, characteristic of white noise, and are on order 

of magnitude less than the dominant eigenvalues of a. Thus the error subspace generated 

from this Monte Carlo simulation appears to be robust. 
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5. Assimilation experiments 

The effectiveness of the empirical multivariate forecast error covariance estimate is as- 

sessed by assimilating the temperature observations from the TAO moorings. The evaluation 

uses a set of independent (i.e. not assimilated) temperature, salinity and zonal velocity ob- 

servations from the TAO servicing cruises. The temperature and salinity data  are based 

on Conductivity-Temperature-Depth (CTD) profiles and the velocity data from the Acous- 

tic Doppler Profiler (ADCP). The comparison uses a gridded analysis of these data, as 

described by Johnson et a1 (2000). 

The assimilation experimental setup is as follows. The model was spun-up for 10 years 

with climatological forcing and then integrated with time dependent forcing for 1988-1998 

in all the experiments. The assimilation began in July 1996. The initial conditions and the 

forcing were identical in all assimilation experiments. In addition to  the data assimilation 

runs, a forced model integration without assimilation (referred to  as the control) serves as 

a baseline for assessing the assimilation performance. The assimilation run with a simple 

univariate covariance model is denoted UOI. The run with the empirical multivariate forecast 

error covariance model is termed MvOI. 

In every assimilation experiment, the daily-averaged subsurface temperature data from 

the TAO moorings was assimilated once a day. To alleviate the effects of the large shock on 

the model resulting from the intermittent assimilation of imperfectly balanced increments, 

the incremental update technique was used (Bloom e t  al, 1996). In this implementation, 

the assimilation increment is added gradually to  the forecast fields a t  each time step 

The figures 8 and 9 show the cross-validation of the simulation (i.e., the control, with 

no assimilation) and two assimilation tests against the independent (i.e., not assimilated) 

temperature, salinity and zonal velocity vertical profiles from Johnson et  al. (2002). All 

of the available observed profiles are used and the statistics are separated corresponding to 

four regions: Niiio 4 (16O0E-150"W) and Niiio 3 (15O"W-9O0W), further divided into two 

halves, south and north of the equator (0°-5"N and 5"s-0"). To put the amplitude of the 
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RMSD in prospective, the mean monthly standard deviation (std) of the model is plotted 

as well. I t  is calculated using daily values at the same predefined depth levels on which the 

analyses are performed. The std represents the level of the internal variability in the model 

for the submonthly temporal scales which could in part be responsible for the errors in the 

monthly averaged profiles assessed against single asymptotic ship observations. In general, 

the RMSD of the control quantities and the data  is about twice as large as the model std. 

The MvOI experiment shows comparable skill in temperature as the UOI with the greatest 

reduction in RMSD in the thermocline in the Niiio 3 region south of the equator. Below 400 

meters neither of the assimilation schemes shows smaller RMSD than the control run due 

to  the fact that  data for assimilation is only available above 500 meters and at  this level the 

observations are sparse. 'l'he MvOI is abie, however, to  preserve the saiinity structure south 

of the equator and in the Nifio 3 region north of the equator. To a lesser extent the MvOI 

current structure is also improved compared with the UOI, especially south of the equator. 

The UOI assimilation improves upon the control case in the representation of tempera- 

ture, yet the investigation of other model fields, such as salinity, reveals potential problems 

in a long-term integration. Figure 10 shows time series of the equatorial salinity, averaged 

between 2"s and 2"N at the thermocline depthmsince the beginning of the assimilation. 

Where available, the observed salinity is shown by stars. In the UOI experiment it took 

on the order of 3 to 4 months for the salinity structure to deteriorate significantly. Poor 

performance of UOI is due to  the fact that  correcting the temperature field alone introduces 

artificial and potentially unstable water mass anomalies whose propagation and eventual 

enhancement destroys model dynamic balances. A method to  alleviate this problem, pro- 

posed by Troccoli and Haines (1999) relies on the model-derived water mass properties to  

correct the model salinity commensurate with the temperature corrections made by assim- 

ilating temperature observations. The salinity increments are calculated according to  the 

temperature analysis by preserving the model's local T-S relationship. While the proposed 

method shows improvement in temperature and salinity analyses when tested with Poseidon 
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ocean model (Troccoli et al., 2003), i t  has some limitations, Le. the scheme is designed solely 

for temperature observations and relies on the model maintaining a consistently good T-S 

relationship. 

To test how well the assimilation schemes preserve the water mass properties, we consider, 

in a manner similar to  Troccoli et al. (2003)) the T-S relationships in the same subregions 

as used above. T-S pairs at each observation are compared with model values interpolated 

to the same locations using a T-S grid of ganularity 0.25"C by 0.1 (figures 11 and 12). At 

least 5 T-S pairs must be found for a colored circle to  be plotted to  make sure that the 

features in the figures are robust. South and north of the equator in both Niiio 3 and Niiio 4 

regions the model without assimilation (top panels) shows good representation of T-S except 

in the area of warmest water (cyan circles near the top of the plot) and somewhat in the 

representation of the dense cool saline water (few cyan circles below the main body of red 

color). The first deficiency is successfully corrected by the MvOI and to  a lesser degree 

by the UOI. Some observed surface warm saline waters in the Nifio 3 region north of the 

equator are not included in any of the model analyses, probably due to  errors in surface 

forcing that the assimilation is not able to rectify. The problem of the lack of dense saline 

water in the model is slightly overcorrected by MvOI: all cyan circles change t o  red and some 

black circles appear in both regions north and south of the equator. The UOI scheme shows 

gross over-production of this type of water south of the equator and to a lesser degree in 

the north and i t  misses the more saline side of the distribution from 0 0  of 22 to 26, north 

of the equator as well as in the south. Thus, significant problems are apparent in the UOI 

scheme, while MvOI is able to  improve upon the control over almost the entire range of T-S 

diagram. 

Figures 13, 14 and 15 show examples of a meridional cross-section of the temperature, 

salinity and zonal velocity fields compared to a selection of sections prepared and presented in 

Johnson et a1 (2002). The sections are chosen so that approximately simultaneous sections 

across the Pacific basin can be shown after a long period of integration (about 2 years). 
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These sections are included in the RMSD statistics of figures 8 and 9. The temperature 

in the UOI experiment is an improvement over the control, while the salinity structure 

in the UOI has little resemblance to  data. The model by itself is capable of producing 

good salinity and current fields. The UOI salinity cross sections display no penetration of 

the saline waters from the south across the equator and erroneous deep extension of high 

salinity around 2"s in the central and eastern basin. The MvOI salinity cross sections are 

more similar to  the observations, although the salinity near the surface at 155"W north 

of the equator is somewhat low. The MVOI zonal current is the closest to the observed 

in the western and eastern Pacific with a better representation of the deeper subsurface 

maxima and a surfacing of the undercurrent at 165"E. The UOI currents reach too deep. 

At the dateline the current structure in MvOI is exaggerated compared to  observed but 

the secondary subsurface maximum a t  about 4"N (the northern subsrface countercurrent) is 

captured in the assimilation. UOI is again too strong too deep south of the equator and too 

weak at the equator. It is apparent from these figures that the MvOI corrects the current 

structure on and close to  the equator better than the statistics of figures 8 and 9 might 

suggest. 

6. Conclusion 

Two conceptually different forecast error covariance models were considered in the con- 

text of the optimal interpolation data assimilation. One is the univariate model of the 

temperature error which uses Gaussian spatial covariance function with different scales in 

zonal, meridional and vertical directions. The second is the multivariate error covariance 

matrix estimated in the dominant error subspace of empirical orthogonal functions (eofs) 

generated from Monte Carlo simulations. The latter provides an empirical estimate of the 

covariability of the errors in temperature, salinity and current fields and spatial structure 

consistent with the governing dynamics. Thus during an assimilation cycle not only the 



temperature field, but the entire ocean state vector can be updated. 

The univariate assimilation scheme brought the temperature field close to  observations, 

yet the structure of the unobserved fields (salinity and currents) deteriorated quickly, pre- 

cluding long-term integration. The multivariate scheme is more successfully corrects the 

salinity and currents as verified by independent observations. 

The empirical error covariance model presented in this study is an initial estimate of the 

forecast error covariance, and is used throughout the assimilation under the assumption that 

the forecast error statistics do not change significantly in time or after prior assimilation. 

The robustness of such an estimate was investigated and it was found that it does not exhibit 

significant seasonal or interannual variability, although there are not enough simulation years 

to distinguish among statistics during El Niiio, La Niiia and normal years. 

The empirical multivariate forecast error covariance model provides important informa- 

tion regarding the error statistics of all the model fields, prognostic or diagnostic. This gives 

a natural way to  include into the state estimation process the observations of different kinds, 

for example, the sea surface height, which is often a model diagnostic. 

Further developments are underway in implementing the MvOI method for the global 

ocean model configuration, particularly improving the ensemble statistics by including syn- 

optic perturbations to  the forcing fields, perturbations to the model parameters and initial 

conditions. It is more natural, taking into account the Poseidon ocean model formulation, 

to  consider the covariances of the model variables within the quasi-isopycnal layers. Inves- 

tigations are also underway to make the MvOI scheme more efficient in a reduced space by 

including only a limited number of leading eofs. 
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Figure 1: Equatorial cross-section of the Poseidon model means (1988-1997) of temperature, 
salinity and zonal velocity (right panels) and corresponding data-based estimates (left panels) 
from Johnson et a1.(2002). 
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Figure 2: Map of the TAO array, consisting of approximately 70 moored ocean buoys in 
the Tropical Pacific Ocean. Squares indicate locations of the buoys equipped with current 
meters. 
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Figure 3: Examples of correlation structure derived from a 160 member ensemble with 
compact support. Contour interval is 0.1. The cross marks the position of the simulated 
observation. 



S(156E, EQ, 150m) and S(x, y, 150m) 
C " " " " " " " " " " " " " " " " " " " " " ~  

EQ 

5s 

1 os 
140E 160E 

S( 180W, EQ, 150m) and S(x, y, 150m) 

5N 

EQ 

5s 

1 os . _ _  
160E 180W 160W 

S( 156E, EQ, 150m) 
and S( 156E, y, z) 

S(180W, EQ, 150m) 
and S( 180W, y, z) 

S( 155W, EQ, 150m) and S(x, y, 150m) 

5N 

EQ 

5s 

1 os 

160W 140W 
S(125W, EQ, 1 OOm) and S(x, y, 1 OOm) 

140W 120w 

S( 155W, EQ, 150m) 
and S( 155W, y, z) 

S( 125W, EQ, 1 OOm) 
and S(125W, y, z) 

0 

1 00 100 100 

100 

200 200 200 

200 
8 s  EQ 8N 8 s  EQ 8N 8 s  EQ 8N nn 

v a  EQ 8N 

S(155W, EQ, 150m) and S(x, EQ, z) 

100 

200 

140E 160E 
S(180W, EQ, 150m) and S(x, EQ, z) S( 125W, EQ, 1 OOm) and S(x, EQ, z) 

0 

100 

100 

200 

160E 180W 160W 

Figure 4: Examples of correlation structure derived from a 160 member ensemble with 
compact support. Contour interval is 0.1. The cross marks the position of the simulated 
observation. 
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Figure 6: One-dimensional decorrelation curves (zonal, meridional and vertical directions) 
corresponding to  the simulated observation at the specified locations. Each thin solid line 
produced by a different realization of the error covariance matrix. Dashed grey lines show 
the Gaussian functional error covariance model used in UOI. 
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Figure 7: Eigenvalues for several realizations of the matrix P (marked a )  and the eigenvalues 
for ensembles of b’s - the residuals of the projections of an arbitrary collection of anomalous 
ocean states onto a basis of eofs. 
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Figure 8: RMSD between the three model runs (UOI, MvOI and control) and the ob- 
servations as a function of depth for the 35 transects. Statistics are grouped by Niiio 4 
(160"E-150"W) and Niiio 3 (150"W-90"W) regions, and each area is further divided into two 
halves, south and north of the equator (0"-5"N) shown here). Temperature RMSD (a-b), 
salinity RMSD (c-d) and zonal velocity RMSD (e-f) are shown. The mean monthly standard 
deviations of the corresponding model fields for the same regions are shown by stars. 
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Figure 9: RMSD between the three model runs (UOI, MvOI and control) and the ob- 
servations as a function of depth for the 35 transects. Statistics are grouped by Niiio 4 
(160"E-150"W) and Niiio 3 (15O"W-9O0W) regions, and each area is further divided into 
two halves, south and north of the equator (5"s-0" shown here). Temperature RMSD (a-b), 
salinity RMSD (c-d) and zonal velocity RMSD (e-f) are shown. The mean monthly standard 
deviations for the corresponding model fields for the same regions are shown by stars. 
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Figure 10: Salinity time series for the control, UOI and MvOI integrations. CTD observations 
are shown where available. Values are averaged between 2OS-2"N at the specified longitudes. 
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Figure 11: Temperature-Salinity diagram for UOI, MvOI and control experiments for Niiio 
4 and Niiio 3 regions south of the equator. Black dot is plotted for values present only in 
the model, cyan - only in observations and points where the model and observations agree 
are shown in red. 
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Figure 12: Temperature-Salinity diagram for UOI, MvOI and control experiments for Niiio 
4 and Niiio 3 regions north of the equator. Black dot is plotted for values present only in 
the model, cyan - only in observations and points where the model and observations agree 
are shown in red. 
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Figure 13: Meridional profiles of the model and observed temperature. Model fields are av- 
eraged over 1 month, whereas the observations are from individual quasi-synoptic meridioanl 
CTD/ADCP sections (following Johnson et al., 2000). 
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14: Meridional profiles of the model and observed salinity. Model fields are aver- 
aged over 1 month, whereas the observations are from individual quasi-synoptic meridioanl 
CTD/ADCP sections (following Johnson et al., 2000). 
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Figure 15: Meridional profiles of the model and observed zonal current. Model fields are 
average over 1 month, whereas the observations are from individual quasi-synoptic meridioanl 
CTD/ADCP sections (following Johnson et al., 2000). 
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